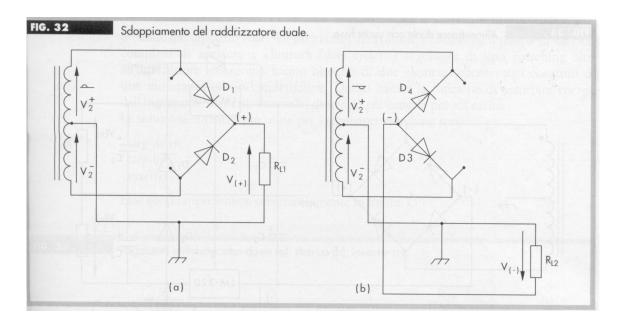
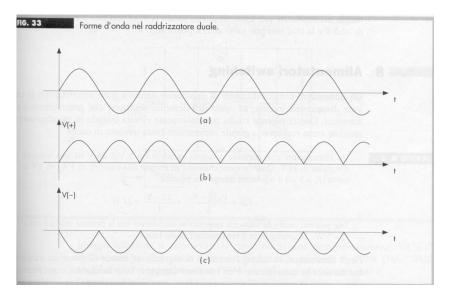


Consente di avere due tensioni duali, cioè una tensione positiva ed una negativa rispetto alla massa comune.


Può essere immaginato come l'accoppiamento di due raddrizzatori con trasformatore a presa centrale che rappresenta la massa comune dei due raddrizzatori.

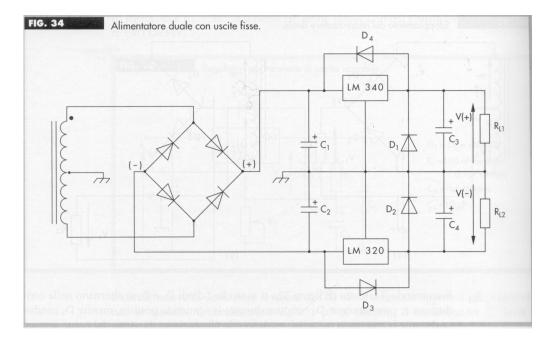


Considerando la tensione in ingresso:

- D1 conduce durante la semionda positiva, mentre D2 conduce durante la semionda negativa, consentendo alla corrente di uscire dal ponte sempre dal terminale (+).
- D3 conduce durante la semionda positiva, mentre D4 conduce durante la semionda negativa, consentendo alla corrente di entrare dal ponte sempre dal terminale (-).

Come si vede durante la semionda positiva conducono sempre D1 e D3 mentre durante la semionda negativa D2 e D4.

Chiaramente per ognuno dei due rami duali occorre un filtro ed un regolatore.


Nello schema utilizzando gli integrati LM340 (per la tensione positiva) e LM320 (per la tensione negativa) si hanno due uscite fisse .

Con i due diodi di protezione D1 e D2 si fa in modo che :

con D1 l'uscita V+ non scenda al di sotto di -0,6V

e con D2 la V- non salga al di sopra di +0,6V.

In tal modo si impedisce il danneggiamento del regolatore più lento (in quanto si evita che la sua uscita venga trascinata da quella del regolatore più veloce).

Alimentatori Switching

Gli stabilizzatori di tipo lineare hanno il grave inconveniente di una forza dissipazione interna, ad opera del regolatore che in genere è un transistor. Tale potenza è particolarmente elevata quando il carico assorbe una grande corrente con bassa tensione di uscita.

Per ovviare a questo inconveniente sono stati progettati i cosiddetti alimentatori switching in cui il transistor viene fatto funzionare come interruttore che si apre e si chiude con una frequenza piuttosto elevata da (10 KHz sino a 500 Khz). In tal modo si dissipa una potenza trascurabile perché a contatto chiuso è quasi nulla la tensione e a contatto aperto è nulla la corrente. Ma pur avendo il vantaggio di avere basse perdite, il circuito si complica se realizzato con componenti discreti . In forma integrata ricordiamo il TL594 che offre una tensione di uscita di 5V.