

ELETTRONICA AMBRA 1995

141016160

In una cittadina, sulle strade a scorrimento più veloce e dotate di spartitraffico, è stata predisposta una rete di centraline per la rilevazione delle velocità dei mezzi in transito, collegate ad una centrale operativa tramite linee dedicate.

Ogni centralina è costituita da:

- un sistema a microprocessore;

- due coppie sorgente-rivelatore a raggi infrarossi con fascio orientato perpendicolarmente alla strada, poste a 20 cm di distanza l'una dall'altra;

- una macchina fotografica automatica, posizionata in modo da poter acquisire l'immagine della targa della vettura in contravvenzione quando supera il limite di velocità di 50 km/h;

- un sensore di luminosità, opportunamente tarato, per valutare la fattibilità della foto.

Il sistema risale alla velocità del mezzo in transito misurando il tempo che intercorre tra l'interruzione del primo fascio e quella del secondo.

Rilevato l'eccesso di velocità, se la luminosità è sufficiente (uscita del sensore superiore a $15~\mu A$), il sistema provvede ad inviare il comando di azionamento della macchina fotografica e a confrontare il numero di foto scattate con quelle a disposizione nel rullino.

Dopo aver scattato l'ultima foto, la centralina invia alla centrale il suo codice di identificazione e le velocità misurate in corrispondenza di tutte le foto scattate; quindi diventa non operativa fino all'arrivo della manutenzione.

Il candidato, formulate le necessarie ipotesi aggiuntive:

1) disegni e commenti lo schema a blocchi dell'intero sistema;

2) progetti il blocco di interfaccia tra il sensore di luminosità ed il sistema a microprocessore più idoneo alla situazione considerata;

 illustri un sistema in grado di misurare il tempo di transito dell'automezzo fra i due punti di rilevazione;

4) proponga il tipo di collegamento tra le centraline e la centrale operativa e un protocollo per la trasmissione;

5) descriva l'algoritmo di misura della velocità e quello relativo alle operazioni di registrazione dell'infrazione.

SOLUZIONE

Si risolve il problema con il microprocessore Z80 nella versione a 6 MHz.

11-12-09-11

Per risalire alla velocità si misura il tempo che impiega il veicolo per percorrere i venti centimetri che separano i due fasci di raggi generati dalle sorgenti.

La misurazione del tempo può essere realizzata con un sistema di contatori che riceva in ingresso un segnale di clock avente frequenza opportuna.

Per determinare tale frequenza è necessario intro-

durre le seguenti ipotesi limitative:

 precisione: si suppone di distinguere tra loro le velocità che si differenziano di 1 km/h;

- range di valori: si suppone di voler acquisire con la massima precisione (1 km/h) tutte le velocità comprese tra 50 km/h e 140 km/h.

La relazione:

 $\left(t = \frac{s}{v}\right)$

che lega il tempo con la velocità è di tipo iperbolico, quindi non lineare. Per snellire la programmazione (in assembler) conviene memorizzare in EPROM una tabella di conversione che consenta di determinare direttamente la velocità in corrispondenza al tempo rilevato. L'intervallo di tempo minore tra due velocità successive si ha quando il veicolo transita ai valori più alti tra le velocità considerate; infatti:

- per v = 139 km/h si ha t = 6.00 ms

- per v = 140 km/h si ha t = 6.05 ms

Si nota che per distinguere le due velocità maggiori è necessario operare con la *precisione delle decine di microsecondi,* pertanto si sceglie un segnale di clock con frequenza f = 100 kHz.

Inoltre, è conveniente allocare la *tabella delle corrispondenze* a partire da un indirizzo di memoria il cui byte basso $00_{\rm H}$ corrisponda alla velocità di $50~{\rm km/h}$.

Operando in tal modo, il byte basso dell'indirizzo può essere considerato direttamente come l'eccesso di velocità (v-50), da memorizzare in caso di infrazione. Considerando che:

Indirizzo	v (km/h)	t (ms)	n° impuls contati
0200	50	14.40 -	5A0 _H
0201	51	14.10	584 _H
0202	52	13.85	569 _H
0203	53	13.58	54E _H
0204	54	13.33	535 _H
0205	55	13.09	51D _H
0206	56	12.86	506 _H
0207	57	12.63	4EF _H
0208	58	12.41	4D9 _H
0209	59	12.20	4C4 _H
020A	60	12.00	4B0 _H
020B	61	11.80	49C _H
020C	62	11.61	489 _H
020D	63	11.43	477 _H
020E	64	11.25	465 _H
020F	65	11.08	454 _H
0210	66	10.91	443 _H
0211	67	10.75	433 _H
0212	68	10.59	423 _H
0213	69	10.43	413 _H
0214	70	10.29	405 _H
0215	71	10.14	3F6 _H
0216	72	10.00	3E8 _H
0217	73	9.86	3DA _H
0218	74	9.73	3CD _H
0219	75	9.60	3C0,
021A	76	9.47	3B3 _H
021B	77	9.35	3A7 _H
021C	78	9.23	39B _H
021D	79	9.11	38F _H
021E	80	9.00	384 _H

Indirizzo	v (km/h)	t (ms)	n° impulsi contati
021F	81	8.89	379 _H
0220	82	8.78	36E _H
0221	83	8.67	363 _H
0222	84	8.57	359 _H
0223	85	8.47	34F _H
0224	86	8.37	345 _H
0225	87	8.28	33C _H
0226	88	8.18	332,
0227	89	8.09	329 _H
0228	90	8.00	320 _H
0229	91	7.91	317 _H
022A	92	7.83	30F _H
022B	93	7.74	306 _H
022C	94	7.66	2FE _H
022D	95	7.58	2F6 _H
022E	96	7.50	2EE,
022F	97	7.42	2E6 _H
0230	98	7.35	2DF _H
0231	99	7.27	2D7 _H
0232	100	7.20	2D0,
0233	101	7.13	2C9 _H
0234	102	7.06	2C2,
0235	103	6.99	2BB _H
0236	104	6.92	2B4 _H
0237	105	6.86	2AE,
0238	106	6.79	2A7 _H
0239	107	6.73	2A1 _H
023A	108	6.67	29B _H
023B	109	6.61	295 _H
023C	110	6.55	28F _H
023D	111	6.49	289,

Indirizzo	v (km/h)	t (ms)	n° impuls contati
023E	112	6.43	283 _H
023F	113	6.37	27D _H
0240	114	6.32	278 _H
0241	115	6.26	272 _H
0242	116	6.21	26D _H
0243	117	6.15	267 _H
0244	118	6.10	262 _H
0245	119	6.05	25D _H
0246	120	6.00	258 _H
0247	121	5.95	253 _H
0248	122	5.90	24E _H
0249	123	5.85	249,
024A	124	5.81	245 _H
024B	125	5.76	240 _H
024C	126	5.71	23B _H
024D	127	5.67	237 _H
024E	128	5.63	233 _H
024F	129	5.58	22E,
0250	130	5.54	22A _H
0251	131	5.50	226 _H
0252	132	5.45	221 _H
0253	133	5.41	21D _H
0254	134	5.37	219 _H
0255	135	5.33	215 _H
0256	136	5.29	211 _H
0257	137	5.26	20E,
0258	138	5.22	20A _H
0259	139	5.18	206 _H
025A	140	5.14	202,

Tabella 6.8 Tabella di conversione tra la velocità e il conteggio esterno.

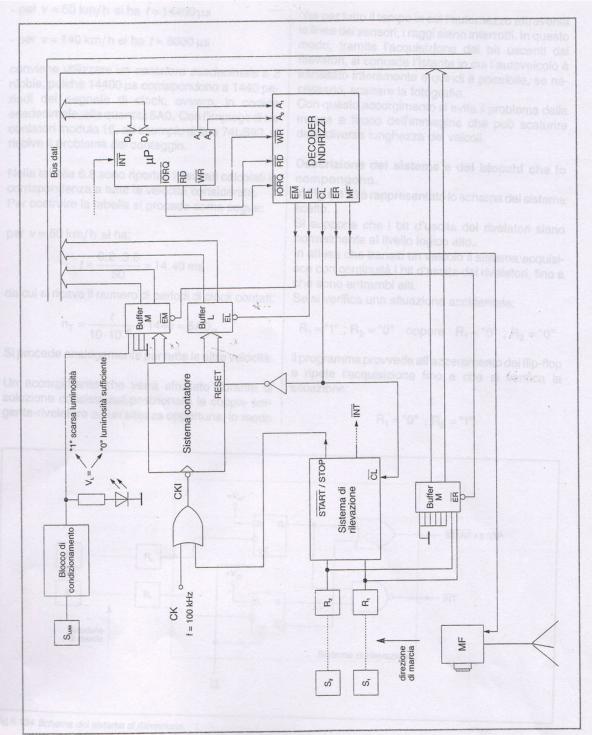


Fig.6.133 Schema a blocchi del sistema scelto per risolvere il problema proposto.

- per v = 50 km/h si ha $t = 14400 \,\mu\text{s}$

- per
$$v = 140 \text{ km/h}$$
 si ha $t = 6000 \,\mu\text{s}$

conviene utilizzare un contatore esadecimale a 3 nibble, poichè 14400 µs corrispondono a 1440 periodi del segnale di clock, ovvero, in codice esadecimale, alla quantità 5A0. Con l'impiego di tre contatori modulo 16, ad esempio di tipo 74LS93, si risolve il problema del conteggio.

Nella tabella 6.8 sono riportati i risultati calcolati in corrispondenza a tutte le velocità considerate. Per costruire la tabella si procede come segue:

per v = 50 km/h si ha:

$$t = \frac{0.2 \cdot 3.6}{50} = 14.40 \,\mathrm{ms}$$

da cui si ricava il numero di periodi di clock contati:

$$n_T = \frac{t}{10 \cdot 10^{-6}} = 1440 = 5A0_H$$

Si procede analogamente per tutte le altre velocità.

Un accorgimento che verrà sfruttato durante la soluzione consiste nel posizionare le coppie sorgente-rivelatore ad un'altezza opportuna, in modo

che per tutto il tempo in cui l'automezzo attraversa le linee dei sensori, i raggi siano interrotti. In questo modo, tramite l'acquisizione dei bit uscenti dai rilevatori, si conosce l'istante in cui l'autoveicolo è transitato interamente e quindi è possibile, se necessario, scattare la fotografia.

Con questo accorgimento si evita il problema della messa a fuoco dell'immagine che può scaturire dalla diversa lunghezza dei veicoli.

Descrizione del sistema e dei blocchi che lo compongono.

In Fig. 6.133 è rappresentato lo schema del sistema scelto.

Si suppone che i bit d'uscita dei rivelatori siano normalmente al livello logico alto.

In attesa che transiti un veicolo il sistema acquisisce con continuità i bit d'uscita dei rivelatori, fino a che sono entrambi alti.

Se si verifica una situazione accidentale:

$$R_1 = "1"$$
; $R_2 = "0"$ oppure $R_1 = "0"$; $R_2 = "0"$

il programma provvede all'azzeramento dei flip-flop e ripete l'acquisizione fino a che si verifica la situazione:

$$R_1 = "0"$$
, $R_2 = "1"$

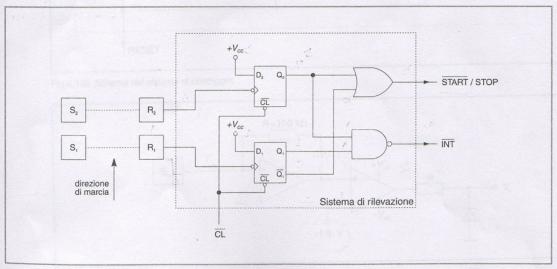


Fig.6.134 Schema del sistema di rilevazione.

Blocco di rilevazione.

Il circuito scelto per realizzare il blocco di rilevazione è illustrato in Fig.6.134.

In corrispondenza al fronte di discesa di R₁ il sistema di rilevazione invia il comando di START; il segnale di clock giunge quindi al blocco contatore, provocando l'inizio del conteggio.

In corrispondenza al fronte di discesa di R_2 si attiva il segnale STOP che blocca il conteggio; contemporaneamente viene inviata al microprocessore la richiesta di interruzione: nella corrispondente routine di interrupt verrà acquisito il risultato del conteggio. Il microprocessore, ad elaborazione ultimata, prov-

vederà ad attivare, tramite il decoder indirizzi, il piedino di clear per l'azzeramento dei flip flop.

Sistema contatore.

Il circuito per il conteggio esadecimale a tre cifre può essere realizzato semplicemente impiegando tre integrati 74LS93; ognuno di essi svolge la funzione di contatore modulo 16 (Fig.6.135).

I 12 bit d'uscita sono collegati, tramite buffer tristate, al bus dati.

Al termine di un processo di acquisizione e prima di iniziare il successivo, il microprocessore deve inviare, tramite il decoder indirizzi, un impulso che

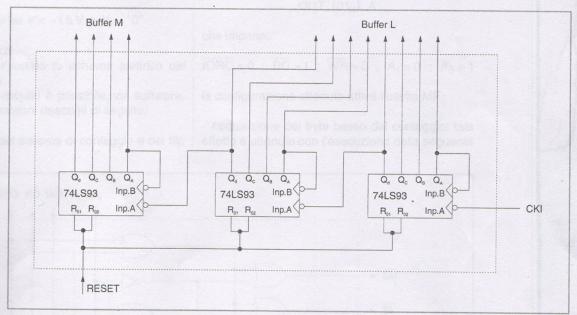


Fig.6.135 Schema del sistema di conteggio.

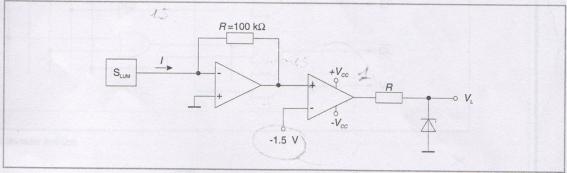


Fig.6.136 Schema del sistema per il rilievo della luminosità.

azzeri i tre contatori.

Rilievo della luminosità

In Fig.6.136 è riportato il circuito per il rilievo della luminosità esterna.

Se la luminosità è sufficiente a garantire la riuscita della fotografia, il circuito invierà al buffer M un livello logico basso; viceversa, se la luminosità è scarsa, l'uscita della rete sarà alta.

Tramite un led collegato con l'uscita è possibile segnalare la situazione di scarsa luminosità.

Il circuito è composto da un convertitore I/V seguito da un comparatore non invertente.

Ponendo $R = 100 \text{ k}\Omega$

- per $I < 15 \,\mu\text{A}$ si ha $V > -1.5 \,\text{V}$ e $V_L = "1"$

- per $I > 15 \,\mu\text{A}$ si ha $V < -1.5 \,\text{V}$ e $V_L = "0"$

Decoder indirizzi

In Fig.6.137 è riportato lo schema elettrico del decoder indirizzi.

Tramite questo circuito è possibile, via software, compiere le operazioni descritte di seguito.

- Azzeramento del sistema di conteggio e dei flip

flop contenuti nel sistema di rilevazione: tale effetto è ottenuto con l'esecuzione della seguente istruzione di scrittura:

che impone:

$$\overline{IORQ} = 0$$
; $\overline{RD} = 1$; $\overline{WR} = 0$; $A_1 = 0$; $A_0 = 0$

la configurazione ottenuta attiva l'uscita CL.

- Invio dell'impulso di attivazione alla macchina fotografica: tale effetto è ottenuto con l'esecuzione della seguente istruzione di scrittura:

che impone:

$$\overline{IORQ} = 0$$
 ; $\overline{RD} = 1$; $\overline{WR} = 0$; $A_1 = 0$; $A_0 = 1$

la configurazione ottenuta attiva l'uscita MF.

- Acquisizione del byte basso del conteggio: tale effetto è ottenuto con l'esecuzione della seguente

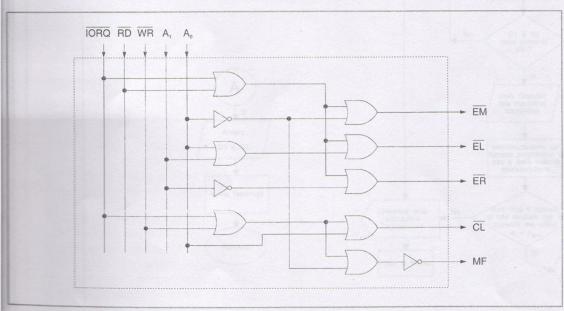


Fig.6.137 Schema del decoder indirizzi.

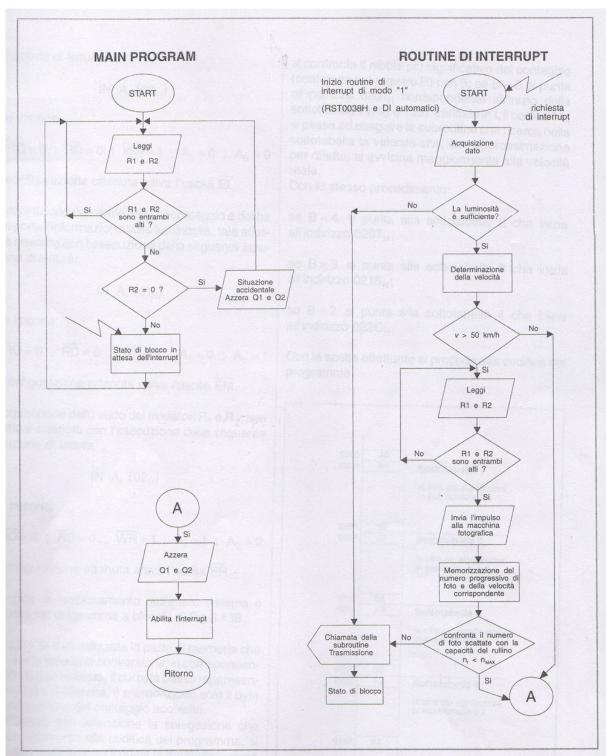


Fig.6.138 Diagramma a blocchi relativo al software di gestione.

istruzione di lettura:

IN A, (00H)

che impone:

$$\overline{IORQ} = 0$$
; $\overline{RD} = 0$; $\overline{WR} = 1$; $A_1 = 0$; $A_0 = 0$

la configurazione ottenuta attiva l'uscita EL.

- Acquisizione del nibble alto del conteggio e del bit che porta l'informazione sulla luminosità: tale effetto è ottenuto con l'esecuzione della seguente istruzione di lettura:

che impone:

$$\overline{IORQ} = 0$$
; $\overline{RD} = 0$; $\overline{WR} = 1$; $A_1 = 0$; $A_0 = 1$

la configurazione ottenuta attiva l'uscita EM.

- Acquisizione dello stato dei rivelatori R₁ e R₂: tale effetto è ottenuto con l'esecuzione della seguente istruzione di lettura:

che impone:

$$\overline{IORQ} = 0$$
; $\overline{RD} = 0$; $\overline{WR} = 1$; $A_1 = 1$; $A_0 = 0$

la configurazione ottenuta attiva l'uscita ER.

La logica di funzionamento dell'intero sistema è descritta nel diagramma a blocchi di Fig.6.138.

In Fig.6.139 è visualizzata la parte di memoria che contiene la *tabella di conversione;* in corrispondenza all'indirizzo indicato, il cui byte basso rappresenta l'eccesso di velocità, è memorizzato solo il byte di peso inferiore del conteggio acquisito.

Analizzando con attenzione la spiegazione che segue unitamente alla codifica del programma, si può capire il motivo per il quale la memorizzazione del nibble più significativo sia superflua.

Per determinare la velocità si opera nel modo seguente:

si confronta il nibble più significativo del conteggio (contenuto nel registro B) con 5; se B = 5 si punta all'indirizzo 0201_H corrispondente all'inizio della sottotabella 1 (Fig.6.139): caricato in L il codice 01_H si passa ad eseguire la subroutine che ricerca nella sottotabella la velocità che, con approssimazione per difetto, si avvicina maggiormente alla velocità reale.

Con lo stesso procedimento:

se B = 4 si punta alla sottotabella 2 che inizia all'indirizzo 0207_H ;

se B = 3 si punta alla sottotabella 3 che inizia all'indirizzo 0215_{H} ;

se B=2 si punta alla sottotabella 4 che inizia all'indirizzo $022C_{H}$.

Con le scelte effettuate si procede alla codifica del programma.

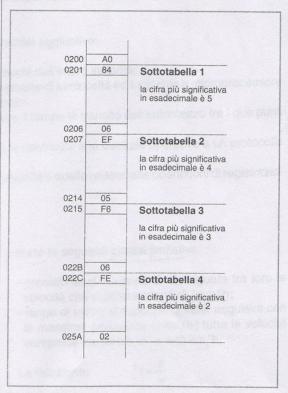


Fig.6.139 Memorizzazione della tabella in sottotabelle.